Extensions 1→N→G→Q→1 with N=D5xDic3 and Q=C22

Direct product G=NxQ with N=D5xDic3 and Q=C22
dρLabelID
C22xD5xDic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=D5xDic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(D5xDic3):1C22 = D20:25D6φ: C22/C1C22 ⊆ Out D5xDic31204(D5xDic3):1C2^2480,1093
(D5xDic3):2C22 = D20:13D6φ: C22/C1C22 ⊆ Out D5xDic31208-(D5xDic3):2C2^2480,1101
(D5xDic3):3C22 = D20:14D6φ: C22/C1C22 ⊆ Out D5xDic31208+(D5xDic3):3C2^2480,1102
(D5xDic3):4C22 = C15:2+ 1+4φ: C22/C1C22 ⊆ Out D5xDic31204(D5xDic3):4C2^2480,1125
(D5xDic3):5C22 = C2xD20:5S3φ: C22/C2C2 ⊆ Out D5xDic3240(D5xDic3):5C2^2480,1074
(D5xDic3):6C22 = C2xD20:S3φ: C22/C2C2 ⊆ Out D5xDic3240(D5xDic3):6C2^2480,1075
(D5xDic3):7C22 = S3xC4oD20φ: C22/C2C2 ⊆ Out D5xDic31204(D5xDic3):7C2^2480,1091
(D5xDic3):8C22 = D20:24D6φ: C22/C2C2 ⊆ Out D5xDic31204(D5xDic3):8C2^2480,1092
(D5xDic3):9C22 = S3xD4xD5φ: C22/C2C2 ⊆ Out D5xDic3608+(D5xDic3):9C2^2480,1097
(D5xDic3):10C22 = D5xD4:2S3φ: C22/C2C2 ⊆ Out D5xDic31208-(D5xDic3):10C2^2480,1098
(D5xDic3):11C22 = S3xD4:2D5φ: C22/C2C2 ⊆ Out D5xDic31208-(D5xDic3):11C2^2480,1099
(D5xDic3):12C22 = D30.C23φ: C22/C2C2 ⊆ Out D5xDic31208+(D5xDic3):12C2^2480,1100
(D5xDic3):13C22 = S3xQ8:2D5φ: C22/C2C2 ⊆ Out D5xDic31208+(D5xDic3):13C2^2480,1109
(D5xDic3):14C22 = D20:16D6φ: C22/C2C2 ⊆ Out D5xDic31208-(D5xDic3):14C2^2480,1110
(D5xDic3):15C22 = C2xDic5.D6φ: C22/C2C2 ⊆ Out D5xDic3240(D5xDic3):15C2^2480,1113
(D5xDic3):16C22 = C2xC30.C23φ: C22/C2C2 ⊆ Out D5xDic3240(D5xDic3):16C2^2480,1114
(D5xDic3):17C22 = C2xD5xC3:D4φ: C22/C2C2 ⊆ Out D5xDic3120(D5xDic3):17C2^2480,1122
(D5xDic3):18C22 = S3xC2xC4xD5φ: trivial image120(D5xDic3):18C2^2480,1086

Non-split extensions G=N.Q with N=D5xDic3 and Q=C22
extensionφ:Q→Out NdρLabelID
(D5xDic3).1C22 = D20.38D6φ: C22/C1C22 ⊆ Out D5xDic32404(D5xDic3).1C2^2480,1076
(D5xDic3).2C22 = D20.39D6φ: C22/C1C22 ⊆ Out D5xDic32404-(D5xDic3).2C2^2480,1077
(D5xDic3).3C22 = C15:2- 1+4φ: C22/C1C22 ⊆ Out D5xDic32408-(D5xDic3).3C2^2480,1096
(D5xDic3).4C22 = D20.29D6φ: C22/C1C22 ⊆ Out D5xDic32408-(D5xDic3).4C2^2480,1104
(D5xDic3).5C22 = F5xDic6φ: C22/C1C22 ⊆ Out D5xDic31208-(D5xDic3).5C2^2480,982
(D5xDic3).6C22 = Dic6:5F5φ: C22/C1C22 ⊆ Out D5xDic31208-(D5xDic3).6C2^2480,984
(D5xDic3).7C22 = F5xC3:D4φ: C22/C1C22 ⊆ Out D5xDic3608(D5xDic3).7C2^2480,1010
(D5xDic3).8C22 = C3:D4:F5φ: C22/C1C22 ⊆ Out D5xDic3608(D5xDic3).8C2^2480,1012
(D5xDic3).9C22 = C2xD5xDic6φ: C22/C2C2 ⊆ Out D5xDic3240(D5xDic3).9C2^2480,1073
(D5xDic3).10C22 = D5xC4oD12φ: C22/C2C2 ⊆ Out D5xDic31204(D5xDic3).10C2^2480,1090
(D5xDic3).11C22 = S3xQ8xD5φ: C22/C2C2 ⊆ Out D5xDic31208-(D5xDic3).11C2^2480,1107
(D5xDic3).12C22 = C4:F5:3S3φ: C22/C2C2 ⊆ Out D5xDic31208(D5xDic3).12C2^2480,983
(D5xDic3).13C22 = (C4xS3):F5φ: C22/C2C2 ⊆ Out D5xDic31208(D5xDic3).13C2^2480,985
(D5xDic3).14C22 = C4xS3xF5φ: C22/C2C2 ⊆ Out D5xDic3608(D5xDic3).14C2^2480,994
(D5xDic3).15C22 = S3xC4:F5φ: C22/C2C2 ⊆ Out D5xDic3608(D5xDic3).15C2^2480,996
(D5xDic3).16C22 = C2xDic3xF5φ: C22/C2C2 ⊆ Out D5xDic3120(D5xDic3).16C2^2480,998
(D5xDic3).17C22 = C22:F5.S3φ: C22/C2C2 ⊆ Out D5xDic31208-(D5xDic3).17C2^2480,999
(D5xDic3).18C22 = C2xDic3:F5φ: C22/C2C2 ⊆ Out D5xDic3120(D5xDic3).18C2^2480,1001
(D5xDic3).19C22 = D5xQ8:3S3φ: trivial image1208+(D5xDic3).19C2^2480,1108

׿
x
:
Z
F
o
wr
Q
<